Lesson 14. Projectile Motion

1 Today...

- Trajectory of a projectile
- Horizontal distance traveled by a projectile
- Vertical height reached by a projectile, shape of the trajectory

2 Trajectory of a projectile

- A projectile with mass m is fired
 - \circ initial point (x_0, y_0)
 - \circ angle of elevation α
 - initial velocity \vec{v}_0
- Assume:
 - Air resistance is negligible
 - The only external force is due to gravity

- We will derive parametric equations that describe the trajectory of this projectile
- 1. Let's define $v_0 = |\vec{v}_0|$ (we're just renaming the initial speed, or the magnitude of the initial velocity). Using this new notation, write \vec{v}_0 in terms of v_0 and α . *Hint*. You'll need to use trigonometry.

2. We need an expression for the acceleration $\vec{a}(t)$ of the projectile.

Recall Newton's second law of motion: if at any time t, a force F(t) acts on an object of mass m producing an acceleration $\vec{a}(t)$, then $\vec{F}(t) = m\vec{a}(t)$.

Since the only external force is due to gravity, which acts downward, we have that $\vec{F}(t) = m\vec{a}(t) = \langle 0, -mg \rangle$. Solve for $\vec{a}(t)$.

3.	Using your answer from part 2, write an expression for the velocity $\vec{v}(t)$ of the projectile. Hint 1. Recall that $\vec{a}(t) = \vec{v}'(t)$. Hint 2. Don't forget the constant vector of integration. Hint 3. Since the initial velocity is \vec{v}_0 , we have $\vec{v}(0) = \vec{v}_0$. Use the expression for \vec{v}_0 you obtained in part 1.
4.	Now, using your answer from part 3, write an expression for the position $\vec{r}(t)$ of the projectile.
	<i>Hint 1.</i> Recall that $\vec{v}(t) = \vec{r}'(t)$. <i>Hint 2.</i> Don't forget the constant vector of integration. <i>Hint 3.</i> Since the initial point is (x_0, y_0) , we have $\vec{r}(0) = \langle x_0, y_0 \rangle$.
5.	Expand the vector equation you obtained in part 4 to write parametric equations (i.e. $x =, y =$) for the trajectory of the projectile.

3 Distance traveled by a projectile

• Let us now work under the assumption that the initial point of the projectile is (0,0): in other words, $x_0 = 0$, $y_0 = 0$.

6. The horizontal distance d traveled by the projectile is the value of x when y = 0. Why?

7. Set y = 0 and $y_0 = 0$ to your expression for y in part 5. Solve for t.

8. Use your answer in part 7 to obtain an expression for the horizontal distance d traveled by the projectile. *Hint 1*. Remember that $x_0 = 0$. *Hint 2*. Use the identity $2 \sin \alpha \cos \alpha = \sin 2\alpha$.

4 Other questions

- 9. Again, assume that the initial point of the projectile is (0,0). What is the maximum vertical height achieved by the projectile?
- 10. Take your parametric equation for *x* in part 5 and solve for *t*. Plug this back into your parametric equation for *y*. You should have an expression for *y* in terms of *x*. This gives you an idea of how the projectile's trajectory looks like in the *xy*-plane. What shape does the trajectory take?