Lesson 14. Projectile Motion

1 Today...

- Trajectory of a projectile
- Horizontal distance traveled by a projectile
- Vertical height reached by a projectile, shape of the trajectory

2 Trajectory of a projectile

- A projectile with mass m is fired
- initial point $\left(x_{0}, y_{0}\right)$
- angle of elevation α
- initial velocity \vec{v}_{0}
- Assume:
- Air resistance is negligible
- The only external force is due to gravity

- We will derive parametric equations that describe the trajectory of this projectile

1. Let's define $v_{0}=\left|\vec{v}_{0}\right|$ (we're just renaming the initial speed, or the magnitude of the initial velocity). Using this new notation, write \vec{v}_{0} in terms of v_{0} and α. Hint. You'll need to use trigonometry.
2. We need an expression for the acceleration $\vec{a}(t)$ of the projectile.

Recall Newton's second law of motion: if at any time t, a force $F(t)$ acts on an object of mass m producing an acceleration $\vec{a}(t)$, then $\vec{F}(t)=m \vec{a}(t)$.
Since the only external force is due to gravity, which acts downward, we have that $\vec{F}(t)=m \vec{a}(t)=\langle 0,-m g\rangle$. Solve for $\vec{a}(t)$.
3. Using your answer from part 2, write an expression for the velocity $\vec{v}(t)$ of the projectile. Hint 1. Recall that $\vec{a}(t)=\vec{v}^{\prime}(t)$. Hint 2. Don't forget the constant vector of integration. Hint 3 . Since the initial velocity is \vec{v}_{0}, we have $\vec{v}(0)=\vec{v}_{0}$. Use the expression for \vec{v}_{0} you obtained in part 1 .
\square
4. Now, using your answer from part 3, write an expression for the position $\vec{r}(t)$ of the projectile.

Hint 1. Recall that $\vec{v}(t)=\vec{r}^{\prime}(t)$. Hint 2. Don't forget the constant vector of integration. Hint 3 . Since the initial point is $\left(x_{0}, y_{0}\right)$, we have $\vec{r}(0)=\left\langle x_{0}, y_{0}\right\rangle$.
5. Expand the vector equation you obtained in part 4 to write parametric equations (i.e. $x=\ldots, y=\ldots$) for the trajectory of the projectile.

3 Distance traveled by a projectile

- Let us now work under the assumption that the initial point of the projectile is $(0,0)$: in other words, $x_{0}=$ $0, y_{0}=0$.

6. The horizontal distance d traveled by the projectile is the value of x when $y=0$. Why?
\square
7. Set $y=0$ and $y_{0}=0$ to your expression for y in part 5 . Solve for t.
\square
8. Use your answer in part 7 to obtain an expression for the horizontal distance d traveled by the projectile. Hint 1 . Remember that $x_{0}=0$. Hint 2 . Use the identity $2 \sin \alpha \cos \alpha=\sin 2 \alpha$.

4 Other questions

9. Again, assume that the initial point of the projectile is $(0,0)$. What is the maximum vertical height achieved by the projectile?
10. Take your parametric equation for x in part 5 and solve for t. Plug this back into your parametric equation for y. You should have an expression for y in terms of x. This gives you an idea of how the projectile's trajectory looks like in the $x y$-plane. What shape does the trajectory take?
